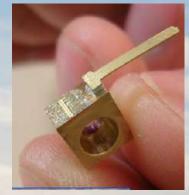
Low power and lightweight UAV sensors for methane and other petrochemical tracers

Mark A. Zondlo

Amir Khan, Lei Tao, David Miller, Kang Sun, Minghui Diao

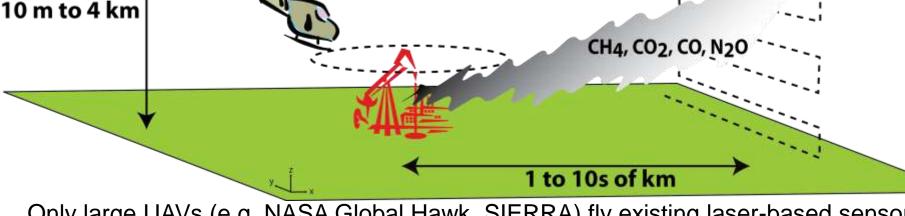
Dept. of Civil and Environmental Engineering Princeton University



Ubiquitous methane leak etection through novel sensors and sensing platforms

29 March 2012, Washington, DC

Why laser-based sensors for methane on UAVs?


Performance

- high sensitivity
- fast response (<< 1 Hz)
- high selectivity
- multispecies detection

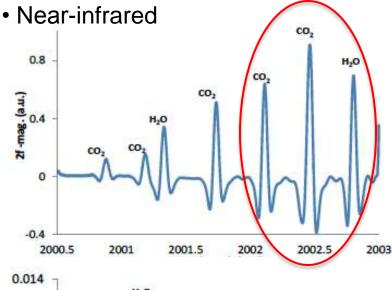
Physical specifications

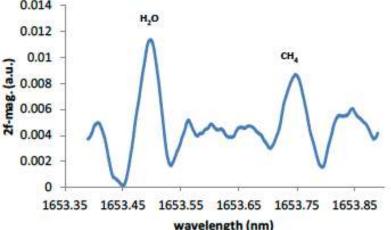
- low power (~ 1 W)
- low mass (~ kg)
- compact size

Only large UAVs (e.g. NASA Global Hawk, SIERRA) fly existing laser-based sensors

To fully utilize UAV capabilities, need low power, light weight, compact sensors for smaller, cheaper, easier-to-deploy UAVs and UAV fleets

Our key innovations:


Vertical cavity surface emitting lasers Open-path spectroscopy Multiharmonic in-line stability system



Vertical cavity surface emitting lasers (VCSELs)

Characteristics

- Inexpensive for mass production
- Very large tuning range
- Low power draw (15 mW)

Attributes for sensing

Inexpensive (\$5/laser in large qty.)

Multispecies detection at high S/N

Low power, lightweight sensors

Spectrally clean absorption lines

Above: VCSEL hygrometer for NSF Gulfstream-V aircraft, >700 flight hours, 0-15 km, polar regions to tropics (Zondlo et al., *J. Geophys. Res.*, 2010)

Open-path detection: advantages and challenges

Open-path detection: gas sampled at ambient conditions, no sample handling

Advantages sampling minimized

no gas handling fast response

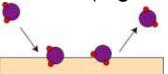
gases

no inlet delay issues no pumps (low power)

no phase re-partitioning

Challenges

spectroscopy over range of temp., pressure need to know T, P in optical path

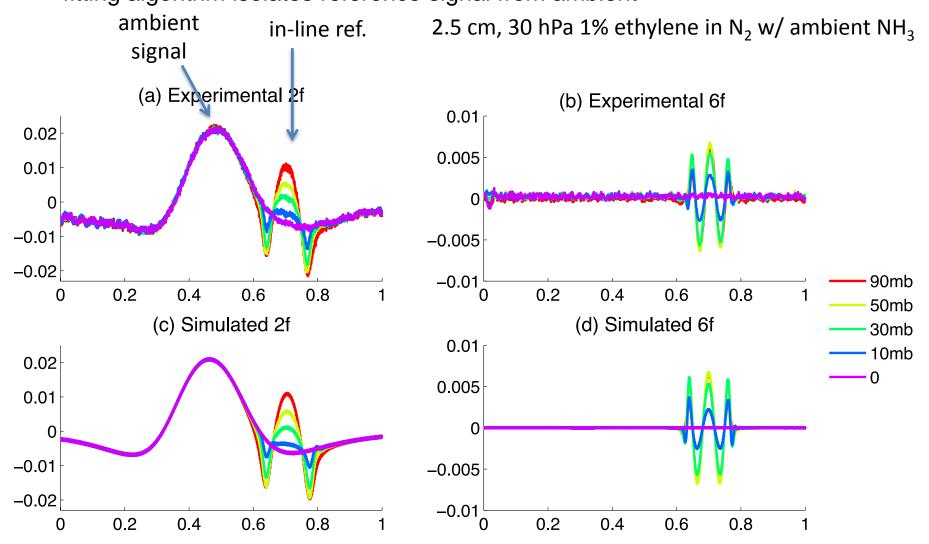

broad lineshapes, interferences from other

extreme, changing conditions

calibration

mirror/optics need to be relatively clean

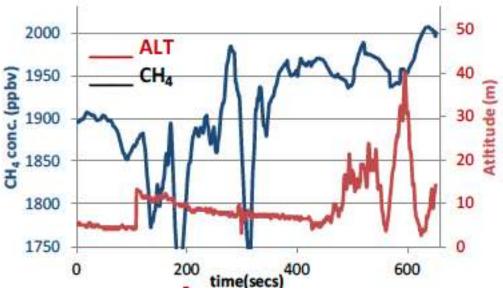
(e.g. sea salt, dew/frost, bugs, mold)


Open-path detection is essential for low power applications/sensors and in rapidly changing environments (high spatial resolution)

Multiharmonic in-line stability system

Problem: Open-path configurations difficult to calibrate, subject to drift

Solution: Continuous, in-line reference signal scanned; multiharmonic numerical fitting algorithm isolates reference signal from ambient



Reference signal unaffected by ambient absorption of interest in 6f detection

VCSEL sensors on UAV flight tests

- UAV test flight sensing, Nov. 2011 (UT-Dallas, David Lary)
- Successfully flew three sensors (CH₄, CO₂, H₂O) on T-REX Align 700E Helicopter
- 1.0-2.2 kg incl. batteries and all data acquisition/laser control electronics

Trace gas	Lower tropospheric range	Precision (1 Hz)	Mass/ Power
CO ₂	350-450 ppmv	0.15 % (0.4 ppmv)	1.5 kg / 2 W
CH ₄	1700-1900 ppbv	0.1 % (1.5 ppbv)	2.2 kg / 2 W
H ₂ O	50 – 50,000 ppmv	< 1 %	1 kg / 2 W

UAV VCSEL-based CH₄ sensor

Flew 135 m above ground, 20 m s⁻¹, rapid turns and accelerations

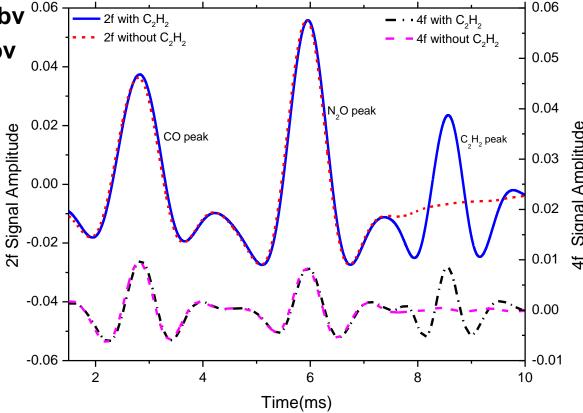
Quantum cascade lasers: simultaneous N₂O, CO, and C₂H₂

Characteristics

- probes fundamental ro-vi bands
- mid-infrared spectral region
- fully cryogenic-free

Attributes for sensing

- high sensitivity, simple designs
- most key atmospheric species
- long-term operation


Experimental $N_2O/CO/C_2H_2$ 2f & 4f Spectrum

 N_2 O precision at 1 Hz = 0.06 ppbv CO precision at 1 Hz = 0.12 ppbv

Multiharmonic in-line maintains calibration of <0.4 ppbv N₂O over 24 hours

10 kg, 40 W, 35 x 18 x 15 cm

Tao et al., Appl. Phys. B, 2012b

- CO distinguishes CH₄ from combustion, uncombusted leaks
- N₂O, C₂H₂ plume tracers when released at source (emissions)

Methane UAV laser-based sensing

VCSEL-based UAV sensors

first flight demonstration of UAV high-performance laser sensors for CH₄, CO₂, H₂O
 1-2 kg, 2 W for each system alone (unoptimized for mass, power at this point)

reference path QC lasers

- simultaneous detection of CH₄/H₂O or CO₂/H₂O
- high-performance (CH₄: 1.5 ppbv prec., 1 Hz)
- multiharmonic, in-line system accounts for drift, greatly lowers maintenance
- future work: integrated systems, electronics to achieve 1 W, 1 kg for all three gases

QCL-based sensors

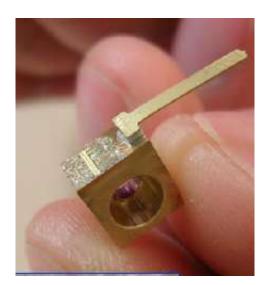
- simultaneous detection of CO, N₂O, and C₂H₂ for tracers to understand CH₄ emissions
- future work: sensors on circuit boards (fibers, waveguides) due to higher sensitivities

Low power, lightweight CH₄ (and other species) sensors excellent for quantifying, fingerprinting fugitive petrochemical emissions from UAVs

Laser-based sensors for methane emissions

Innovative detection schemes of newly-developed technologies:

Attributes of laser-based detection
 Beer-Lambert law
 Multi-harmonic in-line reference stability
 Open-path (no pumps → low power)


2. Near infrared vertical cavity surface emitting lasers (VCSELs)

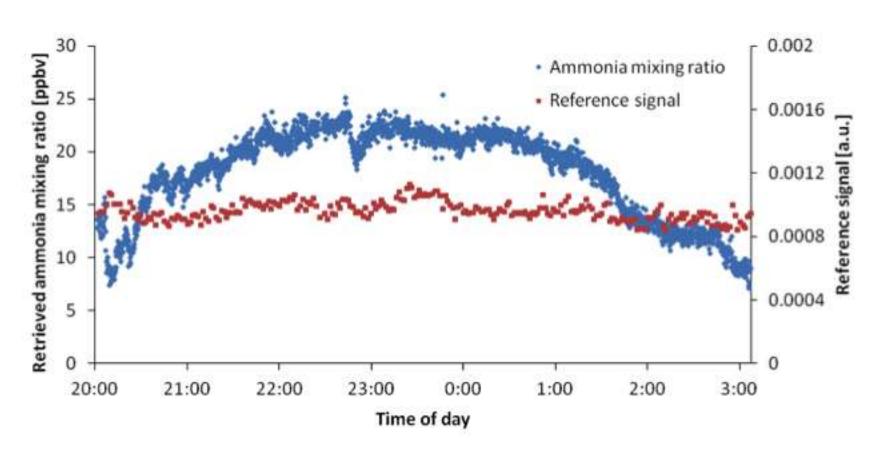
Methane, 1651 nm Carbon dioxide, 2004 nm Water vapor, 1854 nm

3. Quantum cascade lasers (QCLs)

Carbon monoxide/nitrous oxide/acetylene, 4.5 μm

Ammonia/ethylene, 9.1 μm

Merging of innovative optical devices and schemes with future airborne platforms!


- also of use in smartphone apps, remote locations, sensor networks, balloons, tethered balloons, kites

Ammonia in-line reference signal

Sun et al., Appl. Phys. B, 2012

- Reference signal stable to <4% over range factor three in ambient concentration
- Multiharmonic, numerical fitting algorithm isolates NH₃, ref. signals

Laser absorption spectroscopy

$$\frac{I(\lambda)}{I_o(\lambda)} = \exp(-\alpha(\lambda))$$

H2O —

lo

0.0

where: $I(\lambda)$ is light intensity after absorption

 $Io(\lambda)$ is incident light intensity

 $\alpha(\lambda)$ is absorbance

$$a(\lambda) = S(T) g(\lambda,T,P) N I$$

 σ = cross section

where: S(T) is the linestrength

 $g(\lambda,T,P)$ is the normalized Voigt lineshape function

N is the absolute concentration

I is the pathlength

we use combination of direct absorption and multi-harmonic
 wavelength modulation techniques with open-path configurations (no pumps)
 sensitive, selective, fast-response

NSF Gulfstream-V VCSEL hygrometer

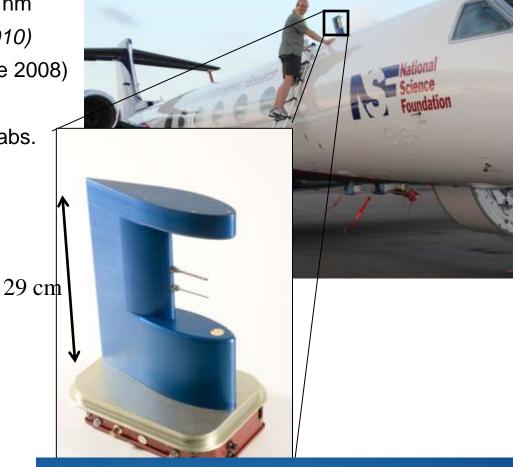
Vertical Cavity Surface Emitting Laser, 1854 nm (Zondlo et al., JGR, 2010)

~ 700 flight hours, routine on NSF G-V (since 2008)

1854 nm fiberized VCSEL, WMS and direct abs.

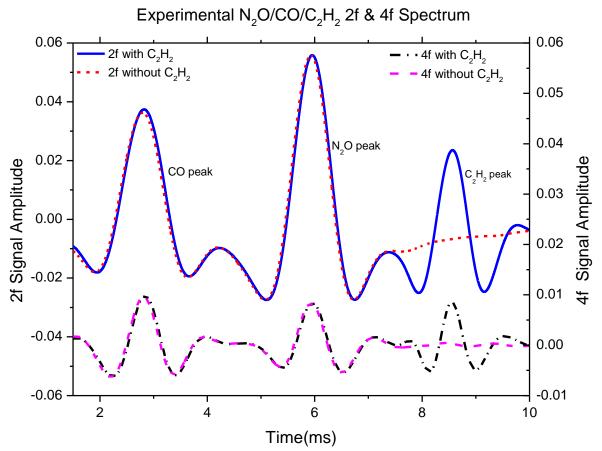
<u>Parameter</u>	<u>Specifications</u>	
Dew point range	-110°C to +30°C	
Sensitivity (1 Hz)	0.05 ppmv	

Frequency 25 Hz Accuracy 2-10% Precision \leq 1%


Power 8 W Weight 6 kg

Size $25 \text{ cm} \times 16 \text{ cm} \times 5 \text{ cm}$

Operation unattended Design open-path


VCSEL hygrometer is open-path
 25 pass Herriott cell: 3.74 m path;
 mirror radius=0.95 cm; 14.95 cm
 mirror separation)

 99.3% data coverage on global campaign from the Arctic to tropics to Antarctic, surface to the stratosphere

Multiharmonic in-line stability signal

Accuracy maintained <0.4 ppbv for 24 hours

- C₂H₂ Reference Cell: 50
 Torr, 3 cm-long 100% C₂H₂
- •C₂H₂ peak serves as continuous reference signal to account for system drift (which ultimately determines accuracy)
- higher harmonic (4f) detection isolates absorption lines at ambient pressures
- absolute calibration by NOAA GMD / WMO standards (0.07 ppbv accuracy)

Open-path Atmospheric Ammonia Sensing

Tao et al., Optics Express, 2012; Sun et al., Appl. Phys B, 2012

- 50 W power incl. laptop
- 300 pptv detection limit (1 Hz)
- field tested in desert, snow, rain, etc.

Challenges:

- Interference from other species,
 i.e. H₂O, CO₂
- Difficult to get the baseline of airbroadened absorption
- Have no control of temperature/pressure
- Calibration: need to enclose the open-path system

Solutions:

- ✓ Detecting ammonia line at 9.06 µm – QC laser (more isolated)
- Wavelength modulation spectroscopy (WMS)
- ✓ T/P spectroscopic studies
- ✓ In-line ethylene calibration

